Software: System-Simulation - SimulationX: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung |
KKeine Bearbeitungszusammenfassung |
||
Zeile 26: | Zeile 26: | ||
'''Beispiele''' | '''Beispiele''' | ||
# [[Software:_SimX_-_Einfuehrung_-_DC-Motor|'''Einführungsbeispiel: Geregelter DC-Motor' | # [[Software:_SimX_-_Einfuehrung_-_DC-Motor|'''Einführungsbeispiel: Geregelter DC-Motor''']] | ||
# [[Software:_SimX_-_Einfuehrung_-_Elektro-Chaos|'''Einführungsbeispiel: Nichtlinearer elektrischer Schwingkreis (Chaos-Simulation)''']] | # [[Software:_SimX_-_Einfuehrung_-_Elektro-Chaos|'''Einführungsbeispiel: Nichtlinearer elektrischer Schwingkreis (Chaos-Simulation)''']] | ||
# [[Software:_SimX_-_Magnetoptimierung_auf_Basis_von_Wandler-Kennfeldern|'''Magnetoptimierung auf Basis von Wandler-Kennfeldern''']] | # [[Software:_SimX_-_Magnetoptimierung_auf_Basis_von_Wandler-Kennfeldern|'''Magnetoptimierung auf Basis von Wandler-Kennfeldern''']] | ||
Zeile 53: | Zeile 53: | ||
Das Simulationsprogramm [https://www.simulationx.de/ '''SimulationX'''] der Firma [https://www.simulationx.de/iti/ueber-uns.html '''ESI ITI GmbH'''] liegt zur Zeit in der Version | Das Simulationsprogramm [https://www.simulationx.de/ '''SimulationX'''] der Firma [https://www.simulationx.de/iti/ueber-uns.html '''ESI ITI GmbH'''] liegt zur Zeit in der Version 4 vor. Neben den numerischen Qualitäten dieses Programms spricht auch die Bereitstellung einer kostenlosen "Express"-Version z.B. für den Einsatz zu Lehrzwecken (nach Registrierung im ITI-Kundencenter). Die Anleitungen zu den Übungskomplexen beziehen sich noch auf die Version 3.8.2., aber es erfolgt zur Zeit eine Anpassung an die Version 4. |
Version vom 25. Januar 2019, 10:40 Uhr
System-Simulation
- ist gekennzeichnet durch die Berücksichtigung unterschiedlichster physikalisch-technischer Domänen mit ihren Wechselwirkungen innerhalb eines ganzheitlichen Modells. Man spricht hierbei auch von "multi domain Simulation". Hervorzuheben sind die Standardisierungsbestrebungen zur physikalisch-objektorientierten Modellierung auf Basis der Modellierungssprache Modelica. Aus einem Netzwerk verkoppelter physikalischer Objekte wird durch einen Interpreter ein differenzial-algebraisches Gleichungssystem generiert, welches die Grundlage für die ganzheitliche Dynamik-Simulation bildet.
Dynamik-Simulation
- umfasst alle Modelle, welche das zeitliche Verhalten von Systemen unter Berücksichtigung von Speicher-Elementen für Energie, Stoff oder Information nachbilden. Im Folgenden wird nur die Modellierung heterogener Systeme auf der Basis von Elementen mit konzentrierten Parametern behandelt.
Elemente mit konzentrierten Parametern
- bilden reale Objekte z.B. in der Mechanik idealisiert als Punktmassen, Elastizitäten, Übertrager oder Dämpfer ab.
- ermöglichen die Gesamtsystemsimulation inklusive 3D-Mechanik, Hydraulik, Pneumatik, Elektronik, Magnetik und Thermodynamik.
- gehören zu einer physikalisch-objektorientierten Modellierungsphilosophie, wie sie zur Zeit durch die Modellierungssprache Modelica repräsentiert wird.
Es werden Lösungen gezeigt, wie man die Möglichkeiten der probabilistischen Simulation und multikriteriellen Optimierung für die System-Simulation nutzbar machen kann. Das umfasst folgende Problemkreise:
- Methodik zum Aufbau von Dynamik-Modellen mit konstruktiven Parametern,
- Identifikation von Modellparametern,
- Gewinnung vereinfachter Ersatzmodelle aus detaillierten Simulationen bzw. Messungen,
- Aspekte der Behandlung unzulässiger Parameter-Kombinationen,
- Einbindung des Simulationsprogramms in einen Experiment-Workflow,
Markenrechtlicher Hinweis zum Produktnamen "SimulationX"
- Die Seitenbezeichner der folgenden SimulationX-Beispiele enthalten das Kürzel SimX im hierarchisch strukturierten Namen.
- Dabei handelt es sich nicht um den offiziellen Produktnamen!
- "SimX" dient hierbei nur zur Kennzeichnung, dass sich das zugehörige Skript auf die Modellierung und Simulation mittels SimulationX bezieht.
Beispiele
- Einführungsbeispiel: Geregelter DC-Motor
- Einführungsbeispiel: Nichtlinearer elektrischer Schwingkreis (Chaos-Simulation)
- Magnetoptimierung auf Basis von Wandler-Kennfeldern
- ...
Übungskomplex "Brailleschrift-Präger"
Die Übungsanleitungen sind Bestandteil der Lehrveranstaltung Optimierung (TU Dresden, Institut für Feinwerktechnik und Elektronik-Design, Dr.-Ing. Alfred Kamusella). Schwerpunkt dieses Übungskomplexes ist die Optimierung eines Magnetantriebs mit Berücksichtigung von Toleranzen vor dem Bau eines ersten materiellen Versuchsmusters unter Nutzung numerischer Modelle:
- Wirkprinzip-Entscheidung (E-Magnet)
- Aktor-Dynamik
- Geometrie und Wärme
- Probabilistische Simulation
- Struktur-Optimierung
- Ausschuss-Minimierung und mehrkriterielle Robust-Optimierung
Parameter-Identifikation
Modellierung physikalischer Effekte
Hier werden Modellansätze vorgestellt, welche sich für die Systemsimulation mechatronischer Systeme als günstig erwiesen haben:
- Modellierung mechatronischer Systeme: USAN-Hilfedatei → (Simulationssystem USAN auf www.ifte.de)
- Modellierung eines elastischen Kontaktes in einem MKS-System
- ...
Das Simulationsprogramm SimulationX der Firma ESI ITI GmbH liegt zur Zeit in der Version 4 vor. Neben den numerischen Qualitäten dieses Programms spricht auch die Bereitstellung einer kostenlosen "Express"-Version z.B. für den Einsatz zu Lehrzwecken (nach Registrierung im ITI-Kundencenter). Die Anleitungen zu den Übungskomplexen beziehen sich noch auf die Version 3.8.2., aber es erfolgt zur Zeit eine Anpassung an die Version 4.