Software: SimX - Nadelantrieb - Aktordynamik - Hysterese-Nennwertoptimierung: Unterschied zwischen den Versionen

Aus OptiYummy
Zur Navigation springenZur Suche springen
KKeine Bearbeitungszusammenfassung
KKeine Bearbeitungszusammenfassung
 
Zeile 3: Zeile 3:
Nach dem Öffnen des vorhandenen OptiY-Versuchsstandes '''Etappe2b_xx.opy''' gelangen wir mit den [[Software:_SimX_-_Nadelantrieb_-_Aktordynamik_-_Wirbelstrom-Nennwertoptimierung|'''bereits geübten Schritten''']] zum benötigten Versuchsstand '''Etappe2c_xx.opy''' für das Hysterese-Modell:
Nach dem Öffnen des vorhandenen OptiY-Versuchsstandes '''Etappe2b_xx.opy''' gelangen wir mit den [[Software:_SimX_-_Nadelantrieb_-_Aktordynamik_-_Wirbelstrom-Nennwertoptimierung|'''bereits geübten Schritten''']] zum benötigten Versuchsstand '''Etappe2c_xx.opy''' für das Hysterese-Modell:
* Günstig für die Konvergenz des Hooke-Jeeves-Verfahrens zum Optimum ist eine Reduktion der '''Startschrittweiten auf ca. 1/1000 der Start-Nennwerte'''. Dies ist möglich, weil das Rauschen des Simulationsmodells infolge der Erhöhung der Rechengenauigkeit gering ist!
* Günstig für die Konvergenz des Hooke-Jeeves-Verfahrens zum Optimum ist eine Reduktion der '''Startschrittweiten auf ca. 1/1000 der Start-Nennwerte'''. Dies ist möglich, weil das Rauschen des Simulationsmodells infolge der Erhöhung der Rechengenauigkeit gering ist!
* Es kommt selten zu "ewigem Rechnen" eines Simulationslaufes mit extrem kleinen Schrittweiten an kritischen Stellen. Wir können für solche Fälle durch ''OptiY'' einen Abbruch der Simulation veranlassen. Dazu setzen wir im OptiY-Workflow für das SimulationX-Modell in der Registerkarte "Allgemein" die "'''Max. Prozesszeit = 1 s'''".
* Es kommt in seltenen Fällen zu "ewigem Rechnen" eines Simulationslaufes mit extrem kleinen Schrittweiten an kritischen Stellen. Wir können für solche Fälle durch ''OptiY'' einen Abbruch der Simulation veranlassen. Dazu setzen wir im ''OptiY''-Workflow für das ''SimulationX''-Modell in der Registerkarte "Allgemein" die "'''Max. Prozesszeit = 1 s'''".


Falls das Modell erst einmal stabil rechnet, ist die Nennwert-Optimierung kein großes Problem:
Falls das Modell erst einmal stabil rechnet, ist die Nennwert-Optimierung kein großes Problem:
<div align="center">[[Bild:Software_SimX_-_Nadelantrieb_-_Aktordynamik_-_hysterese-optimierungsverlauf.gif|.]]</div>  
<div align="center">[[Bild:Software_SimX_-_Nadelantrieb_-_Aktordynamik_-_hysterese-optimierungsverlauf.gif|.]]</div>  
* Im obigen Beispiel wurde eine angestrebte Zykluszeit von 3,4 ms nicht ganz erreicht.
* Im obigen Beispiel wurde eineZykluszeit von '''3,4&nbsp;ms''' angestrebt, aber nicht ganz erreicht.
* Man müsste die Optimierung mit einem leicht vergrößertem Zielwert für die Zykluszeit wiederholen. Für solche Iterationen sollte man den folgenden Hinweis berücksichtigen.
* Man müsste die Optimierung mit einem leicht vergrößertem Zielwert für die Zykluszeit wiederholen. Für solche Iterationen sollte man den folgenden Hinweis berücksichtigen.


'''''Hinweis'':'''  
'''''Hinweis'':'''  
* Der Wert von '''R_Spule''' wird zwar "optimiert", der tatsächliche Einfluss auf das Antriebsverhalten geht aber gegen Null!
* Der Wert von '''R_Spule''' wird zwar "optimiert", der tatsächliche Einfluss auf das Antriebsverhalten geht aber gegen Null!
* Es ist günstig, '''R_Spule als Konstante''' mit einem Wert von 1 Ohm zu berücksichtigen → der Bestwert wird dann ca. mit der Hälfte der Optimierungsschritte erreicht.  
* Es ist günstig, '''R_Spule als Konstante''' mit einem Wert von '''1&nbsp;Ohm''' zu berücksichtigen → der Bestwert wird dann ca. mit der Hälfte der Optimierungsschritte erreicht.  
<div align="center"> [[Software:_SimX_-_Nadelantrieb_-_Aktordynamik_-_Hysterese-Modell|←]] [[Software:_SimX_-_Nadelantrieb_-_Aktordynamik_-_Hysterese-Experimentauswertung|→]] </div>
<div align="center"> [[Software:_SimX_-_Nadelantrieb_-_Aktordynamik_-_Hysterese-Modell|←]] [[Software:_SimX_-_Nadelantrieb_-_Aktordynamik_-_Hysterese-Experimentauswertung|→]] </div>

Aktuelle Version vom 27. Februar 2024, 11:45 Uhr

Nennwert-Optimierung mit Wirbelstrom und Hysterese

Nach dem Öffnen des vorhandenen OptiY-Versuchsstandes Etappe2b_xx.opy gelangen wir mit den bereits geübten Schritten zum benötigten Versuchsstand Etappe2c_xx.opy für das Hysterese-Modell:

  • Günstig für die Konvergenz des Hooke-Jeeves-Verfahrens zum Optimum ist eine Reduktion der Startschrittweiten auf ca. 1/1000 der Start-Nennwerte. Dies ist möglich, weil das Rauschen des Simulationsmodells infolge der Erhöhung der Rechengenauigkeit gering ist!
  • Es kommt in seltenen Fällen zu "ewigem Rechnen" eines Simulationslaufes mit extrem kleinen Schrittweiten an kritischen Stellen. Wir können für solche Fälle durch OptiY einen Abbruch der Simulation veranlassen. Dazu setzen wir im OptiY-Workflow für das SimulationX-Modell in der Registerkarte "Allgemein" die "Max. Prozesszeit = 1 s".

Falls das Modell erst einmal stabil rechnet, ist die Nennwert-Optimierung kein großes Problem:

.
  • Im obigen Beispiel wurde eineZykluszeit von 3,4 ms angestrebt, aber nicht ganz erreicht.
  • Man müsste die Optimierung mit einem leicht vergrößertem Zielwert für die Zykluszeit wiederholen. Für solche Iterationen sollte man den folgenden Hinweis berücksichtigen.


Hinweis:

  • Der Wert von R_Spule wird zwar "optimiert", der tatsächliche Einfluss auf das Antriebsverhalten geht aber gegen Null!
  • Es ist günstig, R_Spule als Konstante mit einem Wert von 1 Ohm zu berücksichtigen → der Bestwert wird dann ca. mit der Hälfte der Optimierungsschritte erreicht.