Software: SimX - Nadelantrieb - Wirkprinzip - Federvorspannung: Unterschied zwischen den Versionen

Aus OptiYummy
Zur Navigation springenZur Suche springen
KKeine Bearbeitungszusammenfassung
KKeine Bearbeitungszusammenfassung
Zeile 10: Zeile 10:
== Frage 2: Bestwert mit Federvorspannung ==
== Frage 2: Bestwert mit Federvorspannung ==


'''Wichtig:''' Hierfür sind Änderungen im SimulationX-Modell erforderlich.  
* '''Wichtig:''' Hierfür sind Änderungen im SimulationX-Modell erforderlich.  
* Dafür beenden wir zuerst das ''OptiY'' ('''mit Speichern''' der aktuellen Konfiguration).
** Dafür beenden wir zuerst das ''OptiY'' ('''mit Speichern''' der aktuellen Konfiguration).
* Danach beenden wir das ''SimulationX'' ('''ohne Speichern''' des aktuellen Zustandes, welcher im Rahmen der Optimierung erzeugt wurde).
** Danach beenden wir das ''SimulationX'' ('''ohne Speichern''' des aktuellen Zustandes, welcher im Rahmen der Optimierung erzeugt wurde).
Die Vorspannung im SimulationX-Modell muss so gewählt werden, dass zumindest die Gewichtskraft von Anker und Nadel kompensiert werden. Das entspricht einer Beschleunigung von '''1 g''' ([http://de.wikipedia.org/wiki/Erdbeschleunigung '''=Erdbeschleunigung''']). Um eine gewisse Sicherheit gegen leichtere Stöße zu haben, soll die Feder so vorgespannt sein, dass trotz einer Beschleunigung von '''a=20 g''' die Nadel in der Ruhelage verbleibt:
Die Vorspannung im SimulationX-Modell muss so gewählt werden, dass zumindest die Gewichtskraft von Anker und Nadel kompensiert werden. Das entspricht einer Beschleunigung von '''1 g''' ([http://de.wikipedia.org/wiki/Erdbeschleunigung '''=Erdbeschleunigung''']). Um eine gewisse Sicherheit gegen leichtere Stöße zu haben, soll die Feder so vorgespannt sein, dass trotz einer Beschleunigung von '''a=20 g''' die Nadel in der Ruhelage verbleibt:
* Die aufzubringende Vorspannkraft '''F''' hängt ab von der beschleunigten Masse '''m''', die erst während der Optimierung aus der Magnetgeometrie ermittelt wird ('''F=m·a''').  
* Die aufzubringende Vorspannkraft '''F''' hängt ab von der beschleunigten Masse '''m''', die erst während der Optimierung aus der Magnetgeometrie ermittelt wird ('''F=m·a''').  

Version vom 27. Februar 2019, 14:43 Uhr

Experiment: Einfluss der Federvorspannung

Frage 1: Bestwert ohne Federvorspannung

Die bisherige Optimierung sollte ohne Vorspannung der Rückholfeder vorgenommen werden. In Abhängigkeit von Geometrie.L_Faktor=1.xx (mit Teilnehmer-Nummer xx=01..99) erhält man eine optimale Lösung für den schnellsten Antrieb. Gesucht sind die Werte des numerischen Bestwertes für:

  • Zykluszeit
  • Ruheposition der Nadelspitze
  • Ankerdurchmesser
  • Elastizitätskonstante der Rückholfeder
  • Einschaltzeit des Magneten

Frage 2: Bestwert mit Federvorspannung

  • Wichtig: Hierfür sind Änderungen im SimulationX-Modell erforderlich.
    • Dafür beenden wir zuerst das OptiY (mit Speichern der aktuellen Konfiguration).
    • Danach beenden wir das SimulationX (ohne Speichern des aktuellen Zustandes, welcher im Rahmen der Optimierung erzeugt wurde).

Die Vorspannung im SimulationX-Modell muss so gewählt werden, dass zumindest die Gewichtskraft von Anker und Nadel kompensiert werden. Das entspricht einer Beschleunigung von 1 g (=Erdbeschleunigung). Um eine gewisse Sicherheit gegen leichtere Stöße zu haben, soll die Feder so vorgespannt sein, dass trotz einer Beschleunigung von a=20 g die Nadel in der Ruhelage verbleibt:

  • Die aufzubringende Vorspannkraft F hängt ab von der beschleunigten Masse m, die erst während der Optimierung aus der Magnetgeometrie ermittelt wird (F=m·a).
  • Die beschleunigte Masse entspricht dem Wert von Nadel.m, da diese im Modell auch die Ankermasse enthält.
  • Der notwendige Vorspannweg s0 hängt ab von der erforderlichen Vorspannkraft F und der Elastizitätskonstante Feder.k, die auch erst während der Optimierung ermittelt wird.
  • Die Wegvorgabe Vorspannung.x setzen wir deshalb auf den Wert Nadel.x0+s0, wobei wir für s0 die entsprechende Berechnungsformel einsetzen. Als vordefinierte Konstante können wir für die Erdbeschleunigung gravity verwenden.
  • Damit gewährleisten wir, dass die Rückholfeder in der Ruhelage immer exakt die 20-fache Gewichtskraft von Nadel und Anker kompensieren kann!

Unter diesen Bedingungen ermitteln wir erneut mit L_Faktor=1.xx die Parameter für die optimale Lösung:

  • Zykluszeit
  • Ruheposition der Nadelspitze
  • Ankerdurchmesser
  • Elastizitätskonstante der Rückholfeder
  • Einschaltzeit des Magneten
  • Wert des Vorspannweges s0 der Feder in µm (s0 entspricht in bei Ruhelage der Nadel dem Wert von Feder.dx, den man im Modellexplorer von SimulationX ablesen kann.)