Software: CAD - Tutorial - Belastungsanalyse: Unterschied zwischen den Versionen

Aus OptiYummy
Zur Navigation springenZur Suche springen
Zeile 63: Zeile 63:
* Für den obigen Verwendungszweck kann man '''''ν''=0,49''' annehmen.  
* Für den obigen Verwendungszweck kann man '''''ν''=0,49''' annehmen.  
* Bei FE-Programmen kann dieser nahe am Grenzwert=0,5 liegende ''ν''-Wert zu Problemen führen, da in den Gleichungssystemen der Quotient (1-2''ν'') auftaucht. Bei ''ν''=0,5 kommt es zur Division durch Null, kurz davor können die großen Zahlen Ursache von Fehlern sein.  
* Bei FE-Programmen kann dieser nahe am Grenzwert=0,5 liegende ''ν''-Wert zu Problemen führen, da in den Gleichungssystemen der Quotient (1-2''ν'') auftaucht. Bei ''ν''=0,5 kommt es zur Division durch Null, kurz davor können die großen Zahlen Ursache von Fehlern sein.  
Welchen konkreten Wert man benutzt, ist nicht egal! Bereits die geringe Änderung von ''ν'' zwischen 0,48 und 0,4998 ändert die Kompressibilität um den Faktor 100 :  
Welchen konkreten Wert man benutzt, ist nicht egal! Bereits die geringe Änderung von ''ν'' zwischen 0,48 und 0,4998 ändert die [http://de.wikipedia.org/wiki/Kompressionsmodul '''Kompressibilität'''] um den Faktor 100 :  


:{|
:{|

Version vom 17. Januar 2013, 10:27 Uhr

7. Übung im CAD-Tutorial
Belastungsanalyse (Finite Elemente Methode)
Software CAD - Tutorial - Belastung mit lokalem Netz.gif
Geirrt zu haben, ist menschlich,
und einen Irrtum einzugestehen
Kennzeichen eines Weisen.

Im CAD-System Autodesk Inventor Professional existiert ein Modul, um innerhalb der CAD-Umgebung die mechanische Belastung von konstruierten Bauteilen untersuchen zu können. Diese Belastungsanalyse basiert auf der Technologie des FEM-Programms ANSYS. Nach der Definition der Bauteil/Baugruppen-Lasten (Loads) und Einspann-Bedingungen (Constraints) hat man u.a. folgende Möglichkeiten der Analyse:

  1. Veranschaulichen der Bauteilverformung
  2. Analysieren der Belastung anhand der Vergleichsspannung
  3. Überprüfen von Sicherheitsfaktoren.
  4. Analysieren von Eigenfrequenzen (Moden)

Im Folgenden wird an zwei Beispielen ein Einstieg in die Methodik der Belastungsanalyse aus der Sicht eines CAD-Nutzers gegeben:

  1. Prozess der Finite-Element-Modellierung und -Simulation anhand eines einfachen "2D"-Bauteils (Lasche).
  2. Anwendung der Methode auf eine Baugruppe (Gummipuffer).

Bauteil-Belastung

0. Aufgabenstellung

  • Die im Titelbild abgebildete Lasche wird im Loch-Innern mit einem biegesteifen Bolzen verschweißt.
  • Wie groß darf die Zugkraft maximal sein, damit bei einem Sicherheitsfaktor=2 die maximal zulässige Vergleichsspannung nicht überschritten wird?
  • Wie groß ist die maximale Verformung für den zulässigen Lastfall?
  • Wie ändert sich die Belastung, wenn die Lasche mittels Spielpassung auf einem biegesteifen Bolzen befestigt wird?

1. Preprocessing (Modellbildung)

2. Modellberechnung

3. Postprocessing (Ergebnisse)

4. Konstruktive Änderung

Baugruppen-Belastung

Software FEM - Tutorial - 3D-Mechanik - gummipuffer objekt.gif

Es sollen sowohl die Materialbelastung als auch die Verformung eines Gummipuffers bei Einwirkung von Kräften untersucht werden:

  • An den Stirnflächen des Gummizylinders sind Stahlscheiben verklebt (Durch Vulkanisieren, damit keine zusätzliche Zwischenschicht entsteht).
  • Das Durchgangsloch hat einen Durchmesser von 4 mm.
  • Die Gesamthöhe des Puffers (Scheiben plus Gummi) beträgt 30 mm.
  • Die Stahlscheiben haben folgende Eigenschaften:
    • Material Stahl C35
    • Außendurchmesser 20 mm
    • Lochdurchmesser 4 mm
    • Dicke 0,5xx mm (mit xx=Teilnehmer-Nr. 01...99)
  • Der Gummi hat folgende Material-Eigenschaften:
    • E-Modul = 5 N/mm²
    • Poisson Zahl=0,5 (idealisiert!)
    • Expansionskoeff. therm.=1E-4/K
    • Zugfestigkeit= 10 MPa
    • Druckfestigkeit=110 MPa
    • Dichte=1,1 g/cm³

Hinweis: Eine Querkontraktionszahl von 0,5 ist der maximal mögliche Wert und entspricht einem inkompressiblem Material. Einige Gummiarten erreichen fast diesen Wert:

  • Für den obigen Verwendungszweck kann man ν=0,49 annehmen.
  • Bei FE-Programmen kann dieser nahe am Grenzwert=0,5 liegende ν-Wert zu Problemen führen, da in den Gleichungssystemen der Quotient (1-2ν) auftaucht. Bei ν=0,5 kommt es zur Division durch Null, kurz davor können die großen Zahlen Ursache von Fehlern sein.

Welchen konkreten Wert man benutzt, ist nicht egal! Bereits die geringe Änderung von ν zwischen 0,48 und 0,4998 ändert die Kompressibilität um den Faktor 100 :

  v:   0,33   0,42   0,48   0,498   0,4998
——— ——— ——— ——— ———— ————
  K/E:   1   2   10   100   1000
K=Kommpressionsmodul, E=Elastizitätsmodul

Vorgehensweise:

Einzusendende Ergebnisse

Teilnehmer der Lehrveranstaltung "CAD-Konstruktion" schicken ihre Ergebnisse per Mail an a.kamusellaChar-ed.gififte.de.

  • Als Anhang der Mail mit (xx=Teilnehmer-Nummer 01...99) ist ein Archiv-File (z.B. Belastung_xx.ZIP) mit folgendem Inhalt zu senden:
  1. Die Bauteil-Datei Lasche_xx.ipt
  2. Der zugehörige reduzierte Ordner Lasche_xx
  3. Die Baugruppen-Datei Datei Gummipuffer_xx.iam mit den zugehörigen Bauteil-Dateien Stahlscheibe_xx.ipt und Gummihülse.ipt.
  4. Der zugehörige reduzierte Ordner Gummipuffer_xx
  • Zur Reduktion der gesendeten Datenmenge sind in den Unterordner \AIP\FEA\ alle Dateien *.fmsh und *.fres zu löschen!

Einsendeschluss ist die Nacht vor dem nächsten Übungskomplex (bzw. 14 Tage nach der Übung).