Software: SimX - Einfuehrung - Elektro-Chaos - Parameter-Identifikation: Unterschied zwischen den Versionen

Aus OptiYummy
Zur Navigation springenZur Suche springen
KKeine Bearbeitungszusammenfassung
KKeine Bearbeitungszusammenfassung
Zeile 11: Zeile 11:
<div align="center"> [[Bild:Software_SimX_-_Einfuehrung_-_Elektro-Chaos_-_C-Diode_-_ParmIdent_-_Diode_Spice-Kind.gif| ]] </div>
<div align="center"> [[Bild:Software_SimX_-_Einfuehrung_-_Elektro-Chaos_-_C-Diode_-_ParmIdent_-_Diode_Spice-Kind.gif| ]] </div>
* Das Spice-ähnliche Diodenmodell ist das, welches unter anderem auch die Sperrschicht-Kapazität in Abhängigkeit von der Spannung berücksichtigt. Ruft man innerhalb des Eigenschaftsdialogs mit <F1> die Hilfe auf, so erhält man einen Überblick über die implementierten physikalischen Effekte und die zugehörigen Modell-Parameter:  
* Das Spice-ähnliche Diodenmodell ist das, welches unter anderem auch die Sperrschicht-Kapazität in Abhängigkeit von der Spannung berücksichtigt. Ruft man innerhalb des Eigenschaftsdialogs mit <F1> die Hilfe auf, so erhält man einen Überblick über die implementierten physikalischen Effekte und die zugehörigen Modell-Parameter:  
 
<div align="center"> [[Bild:Software_SimX_-_Einfuehrung_-_Elektro-Chaos_-_C-Diode_-_ParmIdent_-_Diode_Cj-Function.gif| ]] </div>
* Unsere Kennlinie ist durch den oberen Zweig der Formel beschrieben. Der untere Teil beschreibt den Durchlassbereich der Diode.
* Für den oberen Zweig muss man die Parameter '''Cj0''' und '''M''' so wählen, dass eine möglichst gute Übereinstimmung zu unserer Kennlinie der Diode '''BB 512''' erreicht wird.
* Das könnte man mit etwas Mühe auch noch manuell machen. Wir werden diesen Prozess jedoch mit Hilfe der numerischen Optimierung automatisieren.





Version vom 4. September 2011, 15:19 Uhr

Parameter-Identifikation (Spice-Modell der Diode)

Das Dioden-Modell in der SimulationX-Bibliothek bildet das Verhalten einer Halbleiter-Diode bedeutend besser ab, als unser einfaches Kennlinien-Modell für die Sperrschichtkapazität. Deshalb sollte man in einer elektronischen Schaltung natürlich das Bibliothekselement nutzen, wenn man eine C-Diode benötigt.

Leider gibt es keine Möglichkeit, eine beliebige C-Kennline direkt in dieses Dioden-Modell einzulesen. Die Kennline wird darin durch eine vorgegebene Funktion nachgebildet, deren Parameter man einstellen kann.

Das Ziel der nächsten Experimente soll die Parameter-Findung für diese Kennlinien-Funktion unter Nutzung der numerischen Optimierung sein. Dazu erstellen wir aus unserem Modell C-Kennlinie.ism eine Kopie Parameterfindung.ism. Dieses Modell werden im Folgenden nutzen:

  • Das Element dC_dt für die Bildung der Ableitung können wir in der Modellstruktur löschen.
  • Wir holen uns eine Diode aus der Modell-Bibliothek und öffnen den Eigenschaftsdialog. Hier kann man zwischen verschiedenen Typen von Dioden-Modellen umschalten:
Software SimX - Einfuehrung - Elektro-Chaos - C-Diode - ParmIdent - Diode Spice-Kind.gif
  • Das Spice-ähnliche Diodenmodell ist das, welches unter anderem auch die Sperrschicht-Kapazität in Abhängigkeit von der Spannung berücksichtigt. Ruft man innerhalb des Eigenschaftsdialogs mit <F1> die Hilfe auf, so erhält man einen Überblick über die implementierten physikalischen Effekte und die zugehörigen Modell-Parameter:
Software SimX - Einfuehrung - Elektro-Chaos - C-Diode - ParmIdent - Diode Cj-Function.gif
  • Unsere Kennlinie ist durch den oberen Zweig der Formel beschrieben. Der untere Teil beschreibt den Durchlassbereich der Diode.
  • Für den oberen Zweig muss man die Parameter Cj0 und M so wählen, dass eine möglichst gute Übereinstimmung zu unserer Kennlinie der Diode BB 512 erreicht wird.
  • Das könnte man mit etwas Mühe auch noch manuell machen. Wir werden diesen Prozess jedoch mit Hilfe der numerischen Optimierung automatisieren.


===>>> Hier geht es bald weiter !!!