Software: OptiY-Workflow - Einfache Toleranzkette: Unterschied zwischen den Versionen
Zeile 170: | Zeile 170: | ||
** Berücksichtigt werden jedoch die '''Kosten''' für die Realisierung der Toleranzen. Die Kosten Ki für die Realisierung der Einzel-Toleranz Ti betragen Ki=(1E-6)/Ti. Die Summe der Einzelkosten wird minimiert. | ** Berücksichtigt werden jedoch die '''Kosten''' für die Realisierung der Toleranzen. Die Kosten Ki für die Realisierung der Einzel-Toleranz Ti betragen Ki=(1E-6)/Ti. Die Summe der Einzelkosten wird minimiert. | ||
* Bei Verwendung des Hooke-Jeeves-Verfahrens der Optimierung erfolgt im Beispiel eine Minimierung der gewichteten Summe aus den Kosten und der Abweichung. Man muss also beobachten, ob die Abweichung zur Vorgabetoleranz hinreichend klein wird. Ansonsten muss man den Gewichtsfaktor für die Abweichung entsprechend vergrößern! | * Bei Verwendung des Hooke-Jeeves-Verfahrens der Optimierung erfolgt im Beispiel eine Minimierung der gewichteten Summe aus den Kosten und der Abweichung. Man muss also beobachten, ob die Abweichung zur Vorgabetoleranz hinreichend klein wird. Ansonsten muss man den Gewichtsfaktor für die Abweichung entsprechend vergrößern! | ||
'''Achtung: Dieser Beitrag ist noch ein unvollständiger Entwurf!''' |
Version vom 4. Juli 2008, 15:02 Uhr
Aufgabenstellung
Am Beispiel einer einfachen Maßkette soll gezeigt werden, welche neuen Möglichkeiten die probabilistische Simulation im Vergleich zu klassischen, analytischen Methoden eröffnet:
Das Schlussmaß M0 ergibt sich aus der Gesamt-Abmessung M1 abzüglich der Teilmaße M2 und M3.
Vorgegeben:
- als Ausgangslösung stehen folgende Maße in der Maßkette:
- M1= 11,8-0,2
- M2= 1,3-0,1
- M3= 1,5±0,05
- diese Ausgangslösung besitzt also die Toleranzmittenmaße Ci mit den Toleranzen Ti:
- C1=11,70 mit T1=0,2
- C2= 1,25 mit T2=0,1
- C3= 1,50 mit T3=0,1
Gesucht:
- das Nennmaß des Schlussmaßes N0
- Toleranzmittenabmaß des Schlussmaßes Ec0
- Toleranz T0 des Schlussmaßes
- eine Aussage, ob mit der ermittelten Toleranz T0 die geforderte Toleranz T0_Max des Schlussmaßes eingehalten wird
- günstigere Toleranzen für die Maßglieder der Toleranzkette, um die zulässige Toleranz des Schlussmaßes eventuell voll auszuschöpfen oder die Fertigung kostengünstiger zu gestalten.
Workflow-Modell der Maßkette
Nach dem Start von OptiY erscheint ein leerer Workflow, den wir nun nutzen, um darauf das Modell der Maßkette zu beschreiben. Dafür einleitend einige Erläuterungen zur Abbildung der toleranzbehafteten Maße auf die Entwurfsparameter (Nennwerte und Streuungen) von OptiY:
- Der zu einer OptiY-Streuung zugeordnete OptiY-Nennwert entspricht dem Toleranz-Mittenmaß C in der Begriffswelt der Maße. Man muss also beachten, dass ein OptiY-Nennwert nicht einem Nennmaß Ni innerhalb der Maßkette entspricht!
- Die OptiY-Streuung Toleranz entspricht dem Wert der Maß-Toleranz T um das Toleranz-Mittenmaß.
- Der aktuelle Wert eines Maßes Mi ist also immer die Summe aus dem Toleranzmittenmaß Ci und dem Istwert der Abweichung innerhalb der Streuung. Das wollen wir für jedes unserer drei Maße im Workflow beschreiben. Die Bedienung des Workflow-Editor wird in diesem Beispiel vorausgesetzt:
Im Beispiel werden alle Workflow-Elemente mit ausführlichen Bezeichnern versehen. Für den erfahrenen Nutzer genügen später auch die Kürzel Ci, Ti und Mi. Die einzelnen Größen sind immer ausführlich zu kommentieren und mit der richtigen Maßeinheit zu versehen.
- Toleranzmittenmaße (als Entwurfsparameter - Nennwerte):
- Für die Toleranz-Analyse (Probabilistische Simulation einer Stichprobe) werden die Toleranzmittenmaße als Konstante angenommen.
- Die aktuellen Istwerte des zugehörigen Maßes streut dann um diesen konstanten Wert.
- Toleranzen (als Entwurfsparameter - Streuungen):
- Für die Toleranz-Analyse (Probabilistische Simulation einer Stichprobe) werden die Toleranzen als vorgegebene Konstante angenommen.
- In Vorbereitung auf die Nachbildung der Maximum-Minimum-Methode wurde eine Gleichverteilung für den aktuellen Maßwert angenommen.
- unabhängige Maße (als Transfervariablen):
- Transfer-Variablen bieten die Möglichkeit, ihren Wert über eine Formel zu berechnen.
- Der aktuelle Ist-Wert eines jeden unabhängigen Maßes Mi berechnet man aus der Summe von Toleranzmittenmaß Ci und aktueller Maßabweichung im Rahmen des Toleranzbereiches Ti:
- Den erforderlichen Formel-Ausdruck bearbeitet man im OptiY-Workflow mit dem Rechner:
- Schlussmaß (als Transfervariable):
- Normalerweise definiert man Ergebnisgrößen innerhalb des OptiY-Workflows als Restriktionen oder Gütekriterien. Da im Rahmen einer angestrebten Toleranzoptimierung das Schlussmaß noch für die Formulierung von Gütekriterien benötigt wird, muss man eine Transfervariable benutzen. Restriktionen und Gütekriterien können leider in Formel-Ausdrücken anderer Workflow-Elemente nicht verwendet werden!
- Das Schlussmaß M0 wird über einen Formel-Ausdruck aus allen unabhängigen Maßen Mi berechnet:
- Zum Bearbeiten dieses Ausdrucks benutzt man wieder den Rechner.
Maximum-Minimum-Methode
Diese Methode berücksichtigt bei der Berechnung der Schlussmaß-Toleranz die Worst-Case-Fälle und gewährleistet damit eine 100%-ige Einhaltung des Schlussmaßes.
Die klassische Maximum-Minimum-Methode berechnet folgende Größen des Schlussmaßes:
- das Nennmaß N0 aus den unabhängigen Nennmaßen Ni
- N0 = -1 • (1,5 + 1,3 - 11,8) = 9,0
- das Toleranzmittenabmaß Ec0 aus den unabhängigen Toleranzmittenabmaßen Eci
- Ec0 = -1 • (0 - 0,05 + 0,1) = -0,05
- die Toleranz T0 ergibt sich infolge der linearen Kette aus der Summe der Einzeltoleranzen Ti
- T0=0,2+0,1+0.1=0,4
- Damit ergibt sich das Schlussmaß M0=8,95±0,2
Zum gleichen Ergebnis gelangt man mit der probabilistischen Simulation der Maßkette, wenn man jedes unabhängige Maß als gleichverteilt betrachtet. Die Elemente der Maßkette wurden beim Aufbau des OptiY-Workflows bereits richtig konfiguriert.
Die probabilistische Simulation der Maßkette ín Anlehnung an die Maximum-Minimum-Methode soll nun das erste Experiment sein, welches wir mit dem Workflow-Modell durchführen:
- Wir werden noch mehrere Experimente in diesem OptiY-Versuchsstand durchführen. Deshalb sollte man über das Kontextmenü (Rechter Mausklick) das Experiment Umbenennen in Maximum-Minimum.
- Als "Optimierungsverfahren" wählen wir die "Simulation".
- Da Streuungen im Workflow-Modell existieren, handelt es sich hier um eine probabilistische Simulation unter Berücksichtigung der Toleranzen.
- Praktisch entspricht dies der Simulation einer Stichprobe.
- Nach welchem Verfahren die probabilistische Simulation durchgeführt wird, konfiguriert man in der statistischen Versuchsplanung:
- Für den einfachen linearen Zusammenhang ist eine Moment-Methode das genaueste und effizienteste Verfahren.
- Es soll vorläufig als Ersatzfunktion M0=f(T1,T2,T3) eine Taylorreihe zweiter Ordnung genutzt werden.
- Man sollte immer mit der Berücksichtigung von Interaktionen zwischen den Toleranzgrößen beginnen. Nur so kann man feststellen, ob wirklich Wechselwirkungen zwischen den Toleranzgrößen existieren.
- Mittels Analyse - Verteilungsdichte öffnen wir ein Grafikfenster und ziehen per Drag&Drop die Toleranzen und das Schlussmaß aus dem OptiY-Explorer in dieses Fenster.
- Nach Projekt - Start erfolgt die Simulation der Stichprobe und die Verteilungsdichten der gewählten Größen werden dargestellt. Leider kann man anhand der dargestellten Grenzwerte von Schlussmaß_M0 nur näherungsweise die tatsächlichen Grenzen abschätzen. OptiY schneidet Werte der Dichtefunktion ab, die kleiner als 1/100 ihres Maximalwertes sind:
- Mittels Analyse - Verteilungstabelle erhält man Stützstellen der Verteilungsfunktion aller Bewertungsgrößen (Restriktionen und Kriterien) für den Wertebereich von 0 bis 1 aufgelistet. Da wir keine Restriktionen oder Kriterien im Workflow definierten, ist die Verteilungstabelle leider leer. Wir ergänzen deshalb unseren Workflow um eine Restriktionsgröße _Schlussmaß_M0:
- Der Wert dieser Restriktionsgröße wird über den Formel-Ausdruck aus der Transfervariablen "Schlussmaß_M0" berechnet:
- Wir benötigen die Restriktionsgröße _Schlussmaß_M0 nur als Ergebnisgröße für das Schlussmaß. Deshalb setzt man die Grenzen weit außerhalb möglicher Werte, damit diese Restriktion nicht wirkt:
- In der ersten und letzten Zeile der Verteilungstabelle findet man nun die gesuchten Grenzen für das Schlussmaß:
- Bis auf geringe Rundungsfehler haben entspricht dies den Werten der klassischen Maximum-Minimum-Methode.
Das Ergebnis der Maximum-Minimum-Methode bedeutet:
Bei den vorgegebenen Fertigungsgenauigkeiten liegt mit einer Wahrscheinlichkeit von 100% das Schlussmaß innerhalb der Grenzen 8,95±0,2.
Wahrscheinlichkeitsbasierte Methode
Der Vorteil der probabilistischen Simulation ist die Anschaulichkeit der grafischen Ergebnisdarstellung:
- So gibt es bei vielen Betrachtern sicher ein gewisses Aha-Erlebnis, dass trotz gleichverteilter Einzelmaße das Schlussmaß im Prinzip einer Normalverteilung entspricht.
- Es zeigt sich z.B. eine Häufung des Schlussmaßes in der Nähe des Toleranzmittenmaßes.
- Nur ein geringer Prozentsatz einer Stichprobe liegt mit dem Schlussmaß in der Nähe der Grenzwerte.
An dieser Erkenntnis setzt die wahrscheinlichkeitsbasierte Methode der Toleranzrechnung an:
- Alle unabhängigen Maße streuen um ihr Toleranzmittenmaß mit einer Verteilungsfunktion, welche von unterschiedlichsten Einflussgrößen abhängt.
- Im Normalfall oder bei mangelhafter Kenntnis der Verteilungsfunktionen kann man von einer Normalverteilung ausgehen.
- Die Verteilungsfunktion des Schlussmaßes ist abhängig von der Struktur der Maßkette und den Verteilungsfunktionen der Einzelmaße.
Für lineare Ketten kann man die Toleranz T0 des Schlussmaßes analytisch berechnen:
- Der Streuungskoeffizient ki der Einzelmaße ist abhängig von der Verteilungsfunktion (0,333 für Normalverteilung).
- Der Risikofaktor t für die Toleranz des Schlussmaßes ist abhängig davon, wieviel Prozent der Stichprobe im berechneten Toleranzbereich liegen sollen. Dabei wird die Studentverteilung zugrunde gelegt:
- Bei vorgegebener Ausfallwahrscheinlichkeit (im Beispiel 0,3%, was T0=6•σ entspricht), kann man über einen Web-Rechner der Uni Saarland nach Wahl des Ausfallbereiches, der Angabe eines großen Wertes df=1000000 und der Wahrscheinlichkeit des Ausfalls von z.B. 0.003 den exakten Wert von t=2.968 erhalten:
- Die Toleranzbreite T0 berechnet man mit diesen Werten:
- [math]\displaystyle{ T_0=2{,}968 \cdot \sqrt{(0{,}333 \cdot 0{,}1 )^2+(0{,}333 \cdot 0{,}1)^2+(0{,}333 \cdot 0{,}2)^2}=0{,}2421 }[/math]
- Damit ergibt sich das Schlussmaß zu M0= 8,95±0,121 (normalverteilt).
Das bedeutet:
Bei gleichen Fertigungsgenauigkeiten wird eine reduzierte Schlussmaß-Toleranz erreicht! Es wird mit 99,7% Wahrscheinlichkeit im Beispiel ein Schlussmaß innerhalb der Grenzen 8,95 ± 0,12602 eingehalten.
Das werden wir nun in einem weiteren Experiment mit unserem Workflow-Modell anschaulich nachvollziehen:
- Dazu erstellen wir zuerst ein neues Experiment Wahrscheinlichkeit durch Duplizieren des Maximum-Minimum-Experiments (Kontextmenü der rechten Maustaste).
- Diese Kopie des Experiments erhält durch anschließendes Umbenennen den gewünschten Namen.
- Beim Kopieren werden der Workflow und alle Experiment-Einstellungen der Kopier-Vorlage übernommen. Die Darstellung der Ergebnisse muss man jedoch erneut mittels des Analyse-Menüs konfigurieren.
- Für alle Einzel-Toleranzen wählen wir anstatt der Gleichverteilung die Normalverteilung:
- Die anschließende Simulation ergibt eine Standard-Abweichung σ0=0,0408248 für das Schlussmaß:
- Damit ergibt sich eine Toleranz T0 = 6•σ = 0,245 und das Schlussmaß zu M0= 8,95±0,1225. Die mit dem Workflow-Modell ermittelte Toleranz des Schlussmaßes weicht im Beispiel ungefähr 1% (ca. 3 µm) vom Wert des analytischen Ansatzes ab. Diese zu vernachlässigende Abweichung resultiert wahrscheinlich aus den Näherungen des analytischen Ansatzes, da OptiY die probabilistische Simulation mit den exakten Verteilungen durchführt.
Toleranz-Optimierung
Bisher haben wir nur Toleranz-Analysen durchgeführt. D.h., wir erhielten Aussagen, wie sich gegebene Toleranzen auf ein Schlussmaß auswirken. An solche Analysen sollte sich folgerichtig eine Optimierung der Toleranzkette anschließen. Diese kann unter Einbeziehung unterschiedlichster Anforderungen erfolgen, z.B.:
- Bei vorgegebenem Schlussmaß sind die Einzelmaße so zu tolerieren, dass eine vorgegebene maximale Ausschussquote nicht überschritten wird.
- Zusätzlich können Vorgaben und Wichtungen für die Tolerierung der Einzelmaße vorgenommen werden. Damit lassen sich sowohl Fertigungsrestriktionen als auch Fertigungskosten berücksichtigen.
Dafür werden wir ein neues Experiment mit einem erweiterten Workflow-Modell konfigurieren:
- Wir duplizieren das Experiment Wahrscheinlichkeit und nennen das neue Experiment Toleranz-Maximierung:
- Das Verfahren der Optimierung ist nun nicht mehr Simulation, sondern wir wählen das Hooke-Jeeves-Verfahren für die Suche einer optimalen Lösung. Das Hook-Jeeves-Verfahren besitzt den Vorteil, dass man die Lösungssuche anhand der zielgerichteten Veränderungen der Optimierungsvariablen und der resultierenden Veränderungen der Bewertungsgrößen sehr gut verfolgen kann.
- Die Startschrittweite für die Abtastung der Zielfunktion stellen wir an den einzelnen Optimierungsvariablen manuell ein. Die Anzahl der Optimierungsschritte setzen wir mit z.B. 2000 sehr hoch an. Wir können die Optimierung aber jederzeit manuell stoppen:
- Im Beispiel erfolgte die ursprünglich Dimensionierung der Einzeltoleranzen nach der Maximum-Minimum-Methode bei Vorgabe der zulässigen Schlussmaß-Grenzen. Damit wurde eine 100%-ige Erfüllung für des Schlussmaß erreicht. Mit unserem ersten Experiment konnten wir das dann auch bestätigen.
- Da die Vorgabe der Schlussmaß-Grenzen unter dem Sicht sowohl der Montage, als auch unter dem Aspekt einer sicheren Funktion erfolgte, sollen diese Grenzen im Weiteren als gegeben angenommen werden (M0=8,95±0,2).
- Zur Vorgabe dieser Soll-Toleranz des Schlussmaßes erweitern wir den Workflow um einen Nennwert Toleranz_T0_soll:
- Die Toleranzen Ti der unabhängigen Maße müssen wir als Variable für die Optimierung freigeben und mit sinnvollen Grenzen versehen. Als obere Grenze kann man den Wert von Toleranz_T0_soll verwenden, der untere Grenzwert wird durch die Fertigungsmöglichkeiten beschrieben (z.B. 50 µm):
- Die Startschrittweite für die Abtastung der Zielfunktion sollte ungefähr 1/1000 des aktuellen Toleranzwertes betragen.
- Wir benötigen im Workflow-Modell noch ein Gütekriterium für die Abweichung der aktuellen Schlusstoleranz von der Vorgabetoleranz. Zusätzlich sollte die aktuelle Schlussmaß-Toleranz als separate Größe berechnet werden. Wir benutzen dafür wieder eine Restriktionsgröße:
- Die _Toleranz_T0 des Schlussmaßes berechnet man aus der Varianz des Schlussmaßes:
- Die Abweichung wird als Fehlerquadrat berechnet. Die dafür benötigte aktuelle Toleranz des Schlussmaßes ermittelt man erneut aus der aktuellen Varianz des Schlussmaßes, weil man auf die Werte der Restriktionsgröße _Toleranz_T0 in einem Formelausdruck nicht zugreifen kann:
In OptiY ist die Toleranzbreite T als der 6-fache Wert der Streuung σ definiert. Damit erfasst man 99,7% aller möglichen Werte des streuenden Maßes. Um den Einstieg nicht unnötig kompliziert zu gestalten, werden wir deshalb bei der wahrscheinlichkeitsbasierten Toleranzoptimierung von einer zulässigen Ausschussquote von 0,3% ausgehen:
- Wir können die implemtierten Toleranzbereiche von OptiY benutzen.
- Die Optimierung verfolgt nach ihrem Start das Ziel, die Werte für alle Gütekriterien zu minimieren:
- Explizit haben wir nur die Abweichung von der Soll-Toleranz als Kriterium definiert.
- Infolge der definierten Restriktionen wird eine Straf-Funktion definiert, deren Wert Strafe=0 ist, wenn die Restriktionsgrößen für die Nennwert-Simulation eingehalten werden. Da wir die Grenzen sehr groß gewählt haben, spielen Restriktionsverletzungen in diesem Beispiel keine Rolle.
- Da wir eine infolge der Streuungen probabilistische Simulationen durchführen, wird die Versagenswahrscheinlichkeit als Gütekriterium betrachtet. In unserem Fall gilt immer Versagen=0, da infolge der praktisch "unbegrenzten" Restriktionsgrößen sich die gesamte Stichprobe innerhalb der Grenzen befindet.
- Berücksichtigt werden jedoch die Kosten für die Realisierung der Toleranzen. Die Kosten Ki für die Realisierung der Einzel-Toleranz Ti betragen Ki=(1E-6)/Ti. Die Summe der Einzelkosten wird minimiert.
- Bei Verwendung des Hooke-Jeeves-Verfahrens der Optimierung erfolgt im Beispiel eine Minimierung der gewichteten Summe aus den Kosten und der Abweichung. Man muss also beobachten, ob die Abweichung zur Vorgabetoleranz hinreichend klein wird. Ansonsten muss man den Gewichtsfaktor für die Abweichung entsprechend vergrößern!
Achtung: Dieser Beitrag ist noch ein unvollständiger Entwurf!