Software: CAD - Tutorial - Belastungsanalyse: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung |
KKeine Bearbeitungszusammenfassung |
||
Zeile 9: | Zeile 9: | ||
<div align="center"> - [http://de.wikipedia.org/wiki/Hieronymus_(Kirchenvater) '' Hieronymus ''] - </div> | <div align="center"> - [http://de.wikipedia.org/wiki/Hieronymus_(Kirchenvater) '' Hieronymus ''] - </div> | ||
Im CAD-System ''Autodesk Inventor Professional'' existiert ein Modul, um innerhalb der CAD-Umgebung die mechanische Belastung von konstruierten Bauteilen untersuchen zu können. Diese Belastungsanalyse basiert auf der Technologie des FEM-Programms ANSYS. Nach der Definition der Bauteil/Baugruppen-Lasten ([http://de.wikipedia.org/wiki/Belastung_(Physik) ''Loads'']) und Einspann-Bedingungen ([http://de.wikipedia.org/wiki/ | Im CAD-System ''Autodesk Inventor Professional'' existiert ein Modul, um innerhalb der CAD-Umgebung die mechanische Belastung von konstruierten Bauteilen untersuchen zu können. Diese Belastungsanalyse basiert auf der Technologie des FEM-Programms ANSYS. Nach der Definition der Bauteil/Baugruppen-Lasten ([http://de.wikipedia.org/wiki/Belastung_(Physik) ''Loads'']) und Einspann-Bedingungen ([http://de.wikipedia.org/wiki/Einspannung ''Constraints'']) hat man u.a. folgende Möglichkeiten der Analyse: | ||
# Veranschaulichen der Bauteilverformung | # Veranschaulichen der Bauteilverformung | ||
# Analysieren der Belastung anhand der Vergleichsspannung | # Analysieren der Belastung anhand der Vergleichsspannung |
Version vom 7. Januar 2013, 12:43 Uhr
Im CAD-System Autodesk Inventor Professional existiert ein Modul, um innerhalb der CAD-Umgebung die mechanische Belastung von konstruierten Bauteilen untersuchen zu können. Diese Belastungsanalyse basiert auf der Technologie des FEM-Programms ANSYS. Nach der Definition der Bauteil/Baugruppen-Lasten (Loads) und Einspann-Bedingungen (Constraints) hat man u.a. folgende Möglichkeiten der Analyse:
- Veranschaulichen der Bauteilverformung
- Analysieren der Belastung anhand der Vergleichsspannung
- Überprüfen von Sicherheitsfaktoren.
- Analysieren von Eigenfrequenzen (Moden)
Im Folgenden wird an zwei Beispielen ein Einstieg in die Methodik der Belastungsanalyse aus der Sicht eines CAD-Nutzers gegeben:
- Erläuterung des Prozesses der Finite-Element-Modellierung und -Simulation anhand eines einfachen "2D"-Bauteils (Lasche).
- Anwendung der Methode auf eine Baugruppe (Gummipuffer).
Die Beispiele sind so aufbereitet, dass sie im Rahmen einer Finite-Element-Übung ohne Vorkenntnisse zum CAD-System Autodesk Inventor verwendet werden können.
Bauteil-Belastung
Aufgabenstellung:
- Die im Titel abgebildete Lasche wird im Loch-Innern mit einem extrem biegesteifen Bolzen verschweißt:
- Wie groß darf die Zugkraft maximal sein, damit bei einem Sicherheitsfaktor=2 die maximal zulässige Vergleichsspannung nicht überschritten wird?
- Wie groß ist die maximale Verformung für den zulässigen Lastfall?
- Wie ändert sich die Belastung, wenn die Lasche mittels Spielpassung auf einem biegesteifen Bolzen befestigt wird?
1. Preprocessing (Modellbildung)
2. Modellberechnung
3. Postprocessing (Ergebnisse)
4. Konstruktive Änderung
Baugruppen-Belastung
Es sollen sowohl die Materialbelastung als auch die Verformung eines Gummipuffers bei Einwirkung von Kräften untersucht werden:
- An den Stirnflächen des Gummizylinders sind Stahlscheiben verklebt (Durch Vulkanisieren, damit keine zusätzliche Zwischenschicht entsteht).
- Das Durchgangsloch hat einen Durchmesser von 4 mm.
- Die Gesamthöhe des Puffers (Scheiben plus Gummi) beträgt 30 mm.
- Die Stahlscheiben haben folgende Eigenschaften:
- Material Stahl C35
- Außendurchmesser 20 mm
- Lochdurchmesser 4 mm
- Dicke 0,5xx mm (mit xx=Teilnehmer-Nr. 01...99)
- Der Gummi hat folgende Material-Eigenschaften:
- E-Modul = 5 N/mm²
- Poisson Zahl=0,5 (idealisiert!)
- Expansionskoeff. therm.=1E-4/K
- Zugfestigkeit= 10 MPa
- Druckfestigkeit=110 MPa
- Dichte=1,1 g/cm³
Hinweis: Eine Querkontraktionszahl von 0,5 ist der maximal mögliche Wert und entspricht einem inkompressiblem Material. Einige Gummiarten erreichen fast diesen Wert:
- Für den obigen Verwendungszweck kann man ν=0,49 annehmen.
- Bei FE-Programmen kann dieser nahe am Grenzwert=0,5 liegende ν-Wert zu Problemen führen, da in den Gleichungssystemen der Quotient (1-2ν) auftaucht. Bei ν=0,5 kommt es zur Division durch Null, kurz davor können die großen Zahlen Ursache von Fehlern sein.
Welchen konkreten Wert man benutzt, ist nicht egal! Bereits die geringen Änderungen von ν zwischen 0,48 und 0,4998 ändern die Kompressibilität um den Faktor 100 :
v | 0,33 | 0,42 | 0,48 | 0,498 | 0,4998 ----|------|------|------|-------|------- K/E | 1 | 2 | 10 | 100 | 1000
Vorgehensweise:
Einzusendende Ergebnisse
Teilnehmer der Lehrveranstaltung "CAD-Konstruktion" schicken ihre Ergebnisse per Mail an a.kamusellaifte.de.
1. Bauteil-Belastung:
- Als Anhang der Mail mit (xx=Teilnehmer-Nummer 01...99) ist ein Archiv-File (z.B. Belastung_xx.ZIP) mit folgendem Inhalt zu senden:
- Die beiden Dateien Lasche_xx.ipt und Lasche2_xx.ipt
- Die zugehörigen reduzierten Ordner Lasche2_xx und Lasche2_xx:
- In den Unterordnern Simulation_0 sind die Dateien *.fmsh und *.fres zu löschen.
- Ansonsten werden für jedes Bauteil komprimiert 5 bis 10 MByte benötigt!
2. Baugruppen-Belastung (fakultativ ohne Bewertung!):
- Gummipuffer_xx (die komplette Ordnerstruktur des Autodesk Inventor-Projektes):
- Alle Dateien *.fmsh und *.fres in den Simulation_x-Ordnern vor dem Archivieren löschen um den Mail-Anhang nicht unnötig aufzublähen!
Einsendeschluss ist die Nacht vor dem nächsten Übungskomplex (bzw. 14 Tage nach der Übung).